姓 名:付星
出生年月:1988年6月
学 位:博士
职 称:副教授
研究方向:调和分析及其应用
联系方式:xingfu@hubu.edu.cn
教育经历:
2013/09-2016/06,北京师范大学,数学科学学院,博士
2010/09-2013/06,北京师范大学,数学科学学院,硕士
2006/09-2010/06,永利集团88304官网在线登录,数学与计算机科学学院,本科
工作经历:
2016/07 –至今,永利集团88304官网在线登录,永利集团88304官网,讲师、副教授
2021/12-2022/12,加拿大纽芬兰纪念大学访问学者
论文:
1. X. Fu and J. Xiao, An uncertainty principle on the Lorentz spaces, Nonlinear Anal., (to appear).
2. D.-C. Chang, X. Fu and D. Yang, Boundedness of paraproducts on spaces of homogeneous type I, Appl. Anal. 101 (2022), 2144–2169.
3. D.-C. Chang, X. Fu and D. Yang, Boundedness of paraproducts on spaces of homogeneous type II, Appl. Anal. 101 (2022), 2170–2196.
4. M. Luo and X. Fu, Boundedness of certain bilinear operators on vanishing generalized Morrey spaces, Rocky Mountain J. Math. 52 (2022), 223–242.
5. Y. Liu and X. Fu, Boundedness of bilinear fractional integral operators on vanishing generalized Morrey spaces, J. Math. Study 55 (2022), 109–123.
6. X. Fu, D. Yang and S. Yang, Endpoint boundedness of linear commutators on local Hardy spaces over metric measure spaces of homogeneous type, J. Geom. Anal. 31 (2021), 4092–4164.
7. X. Fu, Boundedness of some paraproducts on spaces of homogeneous type, Mathematics 9 (2021), 2591.
8. X. Fu, T. Ma and D. Yang, Real-variable characterizations of Musielak–Orlicz Hardy spaces on spaces of homogeneous type, Ann. Acad. Sci. Fenn. Math. 45 (2020), 343–410.
9. X. Fu, Weighted boundedness of discrete fractional integrals (in Chinese), Sci. Sin. Math.50 (2020), 1–10.
10. X. Fu, Equivalent characterizations of Hardy spaces with variable exponent via wavelets, Front. Math. China. 14 (2019), 737–759.
11. X. Fu and D. Yang, Wavelet characterizations of Musielak–Orlicz Hardy spaces, Banach J. Math.Anal. 12 (2018), 1017–1046.
12. Y. Ding, S. Li, X. Fu and M. Liu, Temporal-aware multi-category products recommendation model based on aspect-level sentiment analysis, Journal of Electronics & Information Technology (Chinese), 2018 Vol. 40 (6): 1453–1460.
13. X. Fu and D. Yang, Wavelet characterizations of the atomic Hardy space H1 on spaces of homogeneous type, Appl. Comput. Harmon. Anal. 44 (2018), 1–37.
14. L. Liu, D.-C. Chang, X. Fu and D. Yang, Endpoint estimates of linear commutators on Hardy spaces over spaces of homogeneous type, Math. Methods Appl. Sci. 41 (2018), 5951–5984.
15. X. Fu, D. Yang and Y. Liang, Products of functions in BMO and H1 via wavelets over spaces of homogeneous type, J. Fourier Anal. Appl. 23 (2017), 919–990.
16. X. Fu and D. Yang , Products of functions in H1 and BMO_ over RD-spaces and applications to Schrödinger operators, J. Geom. Anal., 27 (2017), 2938–2976
17. L. Liu, D.-C. Chang, X. Fu and D. Yang, Endpoint boundedness of commutators on spaces of homogeneous type, Appl. Anal. 96 (2017), 2408–2433.
18. X. Fu, D.-C. Chang and D. Yang, Recent progress in bilinear decompositions, Appl. Anal. Optim. 1 (2017), 153–210.
19. X. Fu and J. Zhao, Endpoint estimates of generalized homogeneous Littlewood–Paley g-functions over non-homogeneous metric measure spaces, Acta Math. Sin. (Engl. Ser.) 32 (2016), 1035–1074.
20. X. Fu, H. Lin, D. Yang and D. Yang, Hardy spaces Hp over non-homogeneous metric measure spaces and their applications, Sci. China Math. 58 (2015), 309–388.
21. X. Fu, D. Yang and D. Yang, The molecular characterization of the Hardy space H1 on non-homogeneous metric measure spaces and its application, J. Math. Anal. Appl. 410 (2014), 1028–1042.
22. X. Fu, D. Yang and W. Yuan, Generalized fractional integrals and their commutators over non-homogeneous metric measure spaces, Taiwanese J. Math. 18 (2014), 509–557.
23. D. Yang, D. Yang and X. Fu, The Hardy space H1 on non-homogeneous spaces and its applications-a survey, Eurasian Math. J. 4 (2013), 104–139.
24. X. Fu, D. Yang and W. Yuan, Boundedness of multilinear commutators of Calderón–Zygmund operators on Orlicz spaces over non-homogeneous spaces, Taiwanese J. Math. 16 (2012), 2203–2238.