欢迎来到:永利集团88304官网!

永利集团88304官网
学术报告
当前位置: 网站首页 > 学术报告 > 正文
Diophantine tuples over integers and finite fields
来源:永利集团88304官网      发布时间:2024-03-27       点击数:
报告时间 2024-03-28 10 时-12 时 报告地点 腾讯会议:994 910 722
报告人 叶智恺
报告名称: Diophantine tuples over integers and finite fields
报告专家: 叶智恺
专家所在单位:加拿大英属哥伦比亚( UBC
报告时间:2024-03-28 上午 10 点-12 点
报告地点:线上, 腾讯会议:994 910 722
专家简介:
叶智恺,英属哥伦比亚大学博士。主要研究方向包括算术组合 , 极值组合,和解析数论。已
Acta Arith., Finite Fields Appl., J. Combin. Theory Ser. A, Mathematika 等杂志发表学术
论文 16 篇。
报告摘要:
Yoo. Semin and Kim Seoyoung with work Joint problem. same the of model field finite
the study to is ingredient key A $M_k(n)$. on bound upper improved an present will I
talk, this In $D_{k}(n)$. property with tuple Diophantine a of size largest the be
$M_k(n)$ denote we and power, $k$-th a than less $n$ is elements distinct two any of
product the if $D_{k}(n)$ property with tuple Diophantine a integers positive of set a call
we 2$, \ge $k and 1$ \ge $n each for generalization: following the on focus we talk, this
In settings. various in generalizations their and tuples Diophantine of study the on literature
extensive and history long a is There square. a than less one is set the in elements distinct
two any of product the if $m$-tuple Diophantine a is integers positive distinct of
a_{m}\}$ a_{2},\ldots, $\{a_{1}, set A

版权所有© 永利集团88304(中国)官网在线登录-保障您的账户安全

地址:湖北省武汉市武昌区友谊大道368号 邮政编码:430062

Email:stxy@hubu.edu.cn 电话:027-88662127